Pythagore Niveau V

 

Auteur : WARME R.

DOSSIER : Elève

 

MATHEMATIQUES :Niveau V.

 

 

 

 

 

 

 

 

 

DOSSIER  n° 20 / 25

 

 

TRAVAUX   AUTO - FORMATIFS 

 

 

PYTHAGORE.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOM : ………………………………

Prénom : …………………………..

 

Classe :…………………..

 

Année    scolaire : ………………………                                        

 

Dossier pris le : ……/………/………

 

Validation de la  formation :    O -  N

           

 Le : ……………………………………..

Nom du  formateur  : ……………………

 

ETABLISSEMENT : …………………………………………..

 

 

Corrigé des travaux  auto - formation.

CORRIGE contrôle :

CORRIGE  évaluation :

 

 

Leçon

TRAVAUX d ’ AUTO - FORMATION

N°20

sur PYTHAGORE

Le théorème ; la Propriété de PYTHAGORE et sa réciproque.

Pré requis :

a) Que signifie l’expression «  résoudre un triangle » ?

 b) Citer les deux méthodes qui permettent de résoudre  un triangle ?

 c) Citer les  possibilités permettant d ’ identifier les caractéristiques d’ un triangle rectangle (mesures d’angle et de longueurs) par le calcul. 

 

 

TRAVAUX  N° 20   d ’ AUTO - FORMATION :  CONTROLE

1°) énoncer  le théorème de Pythagore.

2°) Soit le demi carré :

a)Etablir la relation permettant de calculer :

 

BC ²  =

b) Donner la relation permettant de calculer A B = 

 

 3°) Enoncer  la réciproque de Pythagore.

 

 4°)Que signifie l’expression «  résoudre un triangle » 

 5°)  Citer les deux méthodes qui permettent de résoudre  un triangle ?

 6°)  Citer les  possibilités permettant d ’ identifier les caractéristiques d’ un triangle rectangle (mesures d’angle et de longueurs) par le calcul. 

 

7°)  Citer 3 possibilités permettant d ’ identifier un triangle rectangle .

 

 

TRAVAUX N° 20   d ‘ AUTO - FORMATION   EVALUATION

Consignes : cette évaluation comporte  4 parties : Deux  séries d’exercices  (faire une série minimum ) ; des exercices problèmes , des situations problèmes (interdisciplinaires).

 

1°) Soit un triangle rectangle NMP , rectangle en M .

Ecrire la relation de Pythagore.(avec des lettres)

Calculer NP .

 

2°) Réciproque :

a) Le triangle BAC dont les côtés mesurent respectivement : 30 ; 40 ; 50 mm ; est - il rectangle .

b) Le triangle BAC dont les côtés mesurent respectivement : 15 ; 20  ; 30 mm ; est - il ? .

4°) Calculs  sur la recherche de la troisième dimension du triangle rectangle.

Faire les exercices suivants  : ( voir le cours pour le corrigé)

 

a)  On donne : AC = 4  ; AB = 3 ;

Calculer  CB

 

 

b)  On donne : BC = 20 ; AC =  16 ;

Calculer AB.

 

 

c) On donne : BC = 42 ;  AB = 21 ;

Calculer  de  AC.

 

 

Série II

4°) Niveau  référentiel  (niveau V) 

Compléter le tableau

 

Triangle 1

Triangle 2

Triangle 3

Triangle 4

Triangle 5

   a

 

37 cm

 

0,65 m

 295 mm

    b

450 mm

35 cm

45 cm

 

2,36 dm

    c

600 mm

 

280 mm

0,33 m

 

  

 

 

 

 

 

Série II

N°1

Données :

Résolution  :

BA = 108 mm

 

CA = 45 mm

 

Calculer :

 

« a » = ?

 

 

 

 

 

 

 

 

 

 

N°2

 

Données :

Résolution  :

 

DF =  127 mm

 

DE =  156 mm

 

Calculer : FE  = x   ; à 0,1 mm prés

 

 

 

 

N°3

 

Données :

Réponse :

 

CA  = 74 cm

 

CB = 24 cm

 

Calculer  AB.

 

 

 

 

 

Données :

Réponse :

 

NM  = 13,75 cm

 

NT = 11 cm

 

Calculer  TM

 

 

 

 

 

N°5

Application : Diagonale d’un rectangle

Données :

Résolution :

 

AB = 170 cm

 

BC = 95 cm

Calculer AC = « d »  ( à 0,1 cm prés.)

 


 

N°6

Triangle quelconque :

Données :

Résolution :

 

CB = 114  cm

 

HB = 71 cm

« h »  =  83 cm

Calculer :

 

AB = x    ( à 1 mm prés)

 

AC = y  (à 1 mm prés)

 

N°7

La diagonale d’un carré

Données :

Résolution

 

BC =  32 dm

 

 

En déduire  la valeur de AB ; CD ; AD.

 

Calculer BD  ( = d)  à 1 cm prés.

7 b

++

Etudier le cas où  AB = 1 dm   : d = racine de 2 

 

 

N°8

Le triangle  rectangle  isocèle

Données :

Réponse :

 

-Calculer l’angle E :

 

-Quelle est la nature du triangle ?

 

-DE = 160 cm

En déduire  EF

Calculer DF

 

 

8 b

++

Calculer  « DE » si  « DF »  est égal à   6 cm 

 

 

8c

 

Données :

Réponse :

 

Calculer l’angle F  :

 

-Quelle est la nature du triangle ?

 

-DE = 160 cm

En déduire  EF

Calculer DF

 

 

 

 

 


 

N°9

 

Données :

Réponse :

 

Sachant que DC = 31 m

 

CB = 33 m   et  BA= 56 m

 

Calculer  AC  ( à 0,1 m prés)

 

 

 

10 a

 

Données :

Réponse :

 

En déduire l’angle C

 

Que peut -on dire du triangle ACB , au regard du triangle ADB ?

 

Quelles sont les valeurs des angles :

A CB   =

D C A  =

C D A  =

CAD    =

 

La longueur de :

 AB = 100 mm

En déduire  CB

Calculer :     AC

 (au mm prés)

 

 

 

 

 

10 b

+++

On donne AC = 60 , calculer la valeur de AB puis BC

 

 

 

 

N°10 c

 

Données :

Réponse :

 

En déduire l’angle C

 

Que peut -on dire du triangle ACB , au regard du triangle ADB ?

 

Quelles sont les valeurs des angles :

A CB   =

D C A  =

C D A  =

CAD    =

 

La longueur de :

 AB = 100 mm

En déduire  CB

Calculer :     AC

 (au mm prés)

 

 

 

 

 

10 b

+++

On donne AC = 60 , calculer la valeur de AB puis BC

 

 

N°10

 

Données :

Réponse :

 

En déduire l’angle C

Que peut -on dire du triangle ACB , au regard du triangle ADB ?

Quelles sont les valeurs des angles :

A CB   =

D C A  =

C D A  =

CAD    =

 

La longueur de :

 AB = 100 mm

En déduire  CB

Calculer :     AC

 (au mm prés)

 

 

 

10 b

+++

On donne AC = 60 , calculer la valeur de AB puis BC

 

 

 

 

PB NIVEAU IV :

 

APPLIQUATION : PRISME DROIT

Figure

Données :

Réponse :

 

Soit le carré  ABCD.

On sait que :

AB= 60 mm

 

AM = BN = CP = DQ = 15 mm

On demande :

 

1°) Calculer les dimensions du carré MNPQ.

 

2°) Niveau +

comparer les deux aires.

 

 

 

 

 

 

 

 

Figure

Données :

Réponse :

 

ADCB est  la base du prisme..

Les dimensions du parallélépipède rectangle sont : (en mm)

 

L = 120 mm ; 

Largeur = 40 mm

Hauteur = 30 mm

 

Calculer la longueur :

 

EB =

BG =

EC =

 

 

 

Figure

Données :

Réponse :

 

DCBA est  la base du prisme..

Les dimensions du parallélépipède rectangle sont : (en mm)

 

L = 100 mm ; 

Largeur = 40 mm

Hauteur = 40 mm

 

Calculer la longueur :

 

HA  =

GA  =

FA   =

CA =

 

 

 

 


 

 

N° 14

Problème : niveau V

Parallélépipède rectangle .

Données :

 

 

Les dimensions du prisme droit sont :

 6 cm X  4 cm X 3 cm

 

la vue de face mesure  6 cm par 3 cm.

 

1°) Tracer  le prisme en perspective cavalière.

2°) Calculs :

Calculer  ED

Calculer  FH

Calculer  HC

 

3°) calculer la surface latérale du prisme.

4°) calculer la surface totale du prisme.

5°) Calculer le volume du prisme.

6°) Calculer la masse du prisme  ( masse volumique = 1,2 kg / dm3

7°) Calculer le poids du prisme.

 

 

PB NIVEAU IV :

N° 4

Figure

Données :

Soit un cube dont l’arête mesure 60 mm.

Les points  I, J, K, L, M, N,  sont les centres des faces du cube .

 

a)       Combien de faces a le solide « I J K L M N » ?  Montrer simplement que toutes ses arêtes sont égales.

b)       Calculer la longueur d’une arête ,  EM par exemple.

c)       Calculer le volume de la pyramide « KLMJI » , en déduire le volume du solide : « I J K L M N »

  

 

 

 

 

 

 

 

 

 

 

 

 

SUITE  Devoir de préparation N°2:

Niveau  référentiel  (niveau V) ( si ?  SOS Cours)

Compléter le tableau

 

Triangle 1

Triangle 2

Triangle 3

Triangle 4

Triangle 5

a

 

370 mm

 

65 cm

 2,95  dm

b

45 cm

350 mm

450 mm

 

23, 6 cm

c

60  cm

 

28  cm

0,33 m

 

  

 

 

 

 

 

Série II

N°1

Données :

Résolution  :

BA = 10,8 cm

 

CA = 45 mm

 

Calculer :

 

« a » = ?

 

 

N°2

 

Données :

Résolution  :

 

DF =  127 mm

 

DE =  1,56 dm

 

Calculer : FE  = x   ; à 0,1 mm prés

 

 

 

 

N°3

 

Données :

Réponse :

 

CA  = 740 mm

 

CB = 24 cm

 

Calculer  AB.

 

 

 

 

 

Données :

Réponse :

 

NM  = 13,75 dm

 

NT = 11 cm

 

Calculer  TM

 

 

 

 

 

N°5

Application : Diagonale d’un rectangle

Données :

Résolution :

 

AB = 170 mm

 

 

BC = 9,5 cm

Calculer AC = « d »  ( à 0,1 cm prés.)

 

 

N°6

Triangle quelconque :

Données :

Résolution :

 

CB = 11,4  d

 

HB = 71 cm

« h »  =  83 0 mm

Calculer :

 

AB = x    ( à 1 mm prés)

 

AC = y  (à 1 mm prés)

 

N°7

La diagonale d’un carré

Données :

Résolution

 

BC =  3,2 m

 

 

En déduire  la valeur de AB ; CD ; AD.

 

Calculer BD  ( = d)  à 1 cm prés.

7 b

++

Etudier le cas où  AB = 1 dm   : d = racine de 2 

 

 

N°8

Le triangle  rectangle  isocèle

Données :

Réponse :

 

-Calculer l’angle E :

 

-Quelle est la nature du triangle ?

 

-DE = 1,60 m

En déduire  EF

Calculer DF

 

 

 

 

8 b

++

Calculer  DE si  DF  est égal à   6 cm 

 

 


 

N°9

 

Données :

Réponse :

 

Sachant que DC = 3,1 m

 

CB = 3,3 m   et  BA= 5,6 m

 

Calculer  AC  ( à 0,1 m prés)

 

 

 

N°10

 

Données :

Réponse :

 

En déduire l’angle C

 

Que peut -on dire du triangle ACB , au regard du triangle ADB ?

 

Quelles sont les valeurs des angles :

A CB   =   ; D C A  =    ; C D A  =

CAD    = 60 cm

 

 

10 b

+++

On donne AC = 60 , calculer la valeur de AB puis BC

 

 

 

11°) Calculer  B’ H :

 

Le triangle est -il isocèle ou équilatéral ?

Fin du devoir n°2

 

APPLIQUATIONS   Autres séries d'exercices

1°) Calculer la longueur « x »

 

 

2°) Calculer la longueur « x »

 

3°) Calculer la diagonale d’un cube de 1 m d’ arête .

 

 

 

4°) Calculer la diagonale d’un parallélépipède  rectangle ayant pour dimensions 7 ; 8  et 10 cm .

 

 

 

5°) Calculer la diagonale d’un carré de 2,5 dm de côté

 

 

6°)Calculer la longueur  de AB

 

 

 

 

 

 

7°) Calculer la longueur de la tangente AT (côtes en mm )

 

 

INTERDISCIPLINARITE :

Dans le bâtiment : pour effectuer un pavage dans une pièce .

 

 

Ce procédé permettant de tracer une droite perpendiculaire  par exemple pour le pavage d’une pièce @ .

( les murs n’étant  pas eux mêmes perpendiculaires )

 

On mesure AB = 6O cm sur la règle 1 , qui sert de base , puis on mesure AC = 80 cm sur la règle 2 , et on déplace la règle 2 de façon que BC mesure 1m.

Les deux bords AB et AC forment un angle droit.

 

Remarques : Sur une surface plus réduite , on pourrait porter

       AB = 6 cm AC = 8 cm ; il faut que BC mesure 10 cm .

Ou AB = 3 cm AC = 4 cm ; il faut que BC mesure 5 cm .

Ou AB = 12 cm AC = 16 cm ; il faut que BC mesure 20 cm .

 

Voir aussi  la « corde à 13 nœuds ».

PROBLEMES DIVERS :

N°1 : Quelle longueur doit mesurer une échelle pour atteindre une fenêtre située à 6 m. Si on lui donne 1,5 mètres de pied ?

 

 

N° 2 : Calculer la diagonale du cube au dixième près.

 

 

 

Réponse :

  DB »  5,7

DF »  6,9

 

N°3  Calculer la longueur de la diagonale  du segment BH , au dixième près.

 

N°4 : Le cube à 5 cm d’arête.

Calculer BA , AC et BC.

Quelle  est  la nature du triangle BAC. ?

 

 

 

font-family:Arial'>