DISQUE

Corrigé : CONTROLE :

1°)  Quels sont les termes employés caractérisant une figure géométrique à un trait « géométrique » ?   (ils sont au nombres de .9........)

a)       centre 

b)       cercle 

c)       Rayon 

d)       diamètre

e)       circonférence

f)         disque

g)       arc de circonférence

h)       corde

i)         Angle au centre

 

2°) Qu’appelle - t- on centre ?

centre 

Est un point intérieur du disque  situé à égal distance de la  circonférence On le désigne couramment par la lettre  O.

 

 

3°) Qu ‘appelle - t - on  « cercle » ?

cercle 

Le cercle est l’ensemble des points de la circonférence.

 

4°) Qu ‘est ce que le « rayon » ?

Rayon 

Est un segment de droite qui va du centre à un point de la circonférence.

 

5°) Qu’est ce que le « diamètre » ?

diamètre

Le diamètre est une corde qui passe par le centre ,

 

6°) Qu’est ce  qu ‘une « circonférence » ?

circonférence

La circonférence est la frontière du disque

 

7°) Qu’est ce qu’un « disque » ?

disque

Un disque est constitué par l’ensemble des points de  la circonférence et de sa région intérieur.

°) Qu’est ce « arc de circonférence » ?

arc de circonférence

Un arc de circonférence est une portion de circonférence limitée par deux points

 

9°) Qu’est ce qu’ une « corde » ?

corde

Une corde est un segment de droite joignant deux points de la circonférence.

 

10° ) Qu’est ce qu’  « Angle au centre » ?

 

Angle au centre

Un angle au centre est un angle qui a pour sommet le centre du disque .

On dit que l’angle « intercepte l’arc compris entre ses cotés .

 

11°) A partir de quelle  relation détermine - t- on la valeur de « pi » ? ( il y en a deux en fonction du diamètre et deux en fonction du rayon ).

 

Pour retrouver le nombre « pi » :

a)     on divise la circonférence du cercle par  « 2R » ou par « D »

 

b)     on divise l’aire du disque  par  « R² » ou par « D²/4  »

 

 

12°) Donner la formule qui permet de calculer le périmètre d’un disque : 

a)   en fonction du rayon.

b)  en fonction du diamètre.

a)  (exprimé en fonction du diamètre  « D » )           Pd =  p D  

 b)  (exprimé en fonction du rayon  « R »  )               Pd = p  2 R 

                                                                     ou  ( Pd = 2 p R)

 

13 °) Donner la formule qui permet de calculer l ‘aire d’un disque : 

a)   en fonction du rayon.

b)  en fonction du diamètre.

a)            A d =  p  R 2                 ou         A d = 3,14 R 2

 

b)              

 

 

EVALUATION :CORRIGE

Exercices :

1 )   Calculer la longueur du périmètre du disque de   10 cm de rayon.

  Corrigé :

      a )inventaire de ce que je connais : Pd = 3,142R  et    R =10

b)  On remplace  dans  Pd  la valeur de R : Pd = 3,142 10

c)   Calcul : 3,142 10 =     628

      d) Conclusion :   la longueur du périmètre du disque est de 628 cm

 

 

2 )Calculer la longueur du périmètre du disque de 10cm de diamètre.

Corrigé :

      a )inventaire de ce que je connais : Pd = 3,14D et    D =10

b)  On remplace  dans  Pd  la valeur de D : Pd = 3,1410

c)   Calcul : 3,1410 =     314

      d) Conclusion :   la longueur du périmètre du disque est de 314 cm

 

 

3 )   Calculer l ‘ aire  du disque de   10 cm de rayon.

  Corrigé :

      a )inventaire de ce que je connais : Ad = 3,14 R2        et     R =10 cm

 

b)  On remplace  dans Ad  la valeur de R : Ad = 3,14 102

c)   Calcul : 3,1410 10 =     314 ; (10cm10 cm  donne 100 cm2)

 

 

      d) Conclusion :   l ‘ aire du  disque est de 314 cm2

 

 

4 )Calculer l ‘ aire du disque de 10cm de diamètre.

Corrigé :

      a )inventaire de ce que je connais : Ad = 3,14 R2     et    D =10  et  D = 2 R

  à ce niveau deux sont possibles :

          je cherche la valeur du rayon et j’applique cette valeur dans la « formule » ou je garde la valeur du diamètre j’applique la « formule » Ad = 3,14 ( D2 / 4)    .Les deux démarches conduisent au même résultat.

 

b)  Je  calcule R :       R  = 10 :2     ;   R= 5 cm

c)    On remplace  dans Ad = 3,14 R2   ;    

                                     Ad = 3,14 52

 

      d) Calcul : 3,145 5 =   78,5      ;  (  voir puissance 2  , N°68 :  cm 1 cm1 = cm2)

 

      e) Conclusion :   l ‘ aire du disque est de 78,5 cm2